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Abstract: The most basic example of a quantum mechanical problem, the one-dimensional particle in a box, is 
revisited. Three aspects are treated. 1. It is shown that a number of textbooks give an incorrect result for the 
expectation value of x2, and, therefore, do not obtain the correct spread ∆x. Consequently, the verification of the 
Heisenberg relation is also in error. 2. It is found that textbooks do not mention the origin dependence of  
expectation values, which is a nuisance, as the problem is evidently treated in the literature with two choices of 
origin. 3. Superposition of an infinite number of even (cosine) solutions of the one-dimensional particle in the 
box allows for an analytical demonstration of complete localization of the particle (∆x = 0). 

The particle in the box is the example par excellence for the 
introduction of quantum mechanics in undergraduate 
programs. The basic ideas of quantization, mean value, 
uncertainty, et al. can be taught without too much 
mathematical overload, using the one-dimensional case. The 
generalization to two and three dimensions demonstrates the 
connection between quantum numbers and degrees of freedom 
and is especially useful by virtue of the appearance of 
degeneracy, both systematic and accidental. In this 
communication a few aspects of the one-dimensional problem 
are treated, which have not received the attention they deserve 
or have been handled maladroitly in the textbooks. In essence 
three things will be demonstrated: 

1. Few textbooks give the correct result for the mean value 
of x2, which means that the calculation of the uncertainty 
(standard deviation) or spread in position as the square root of 
the variance (see the defining eq 3) is wrong or absent, and the 
correct verification of the Heisenberg relations consequently is 
missing. 

2. No textbook mentions the fact that the result of the 
calculation of the mean value of x2 is origin-dependent. This is 
important because the calculation may be performed in 
different ways, namely with the particle moving between 
boundaries x = 0 and x = a, or alternatively between x = �a/2 
and x = +a/2. Of course, the mean value of x is origin-
dependent as well, but the result is so obvious, that nobody 
notices it. 

3. It is possible using the cosine solutions (odd quantum 
numbers) of the particle in the box with ±a/2 as boundaries to 
demonstrate analytically the complete localization of the 
particle through superposition of an infinite number of 
functions, showing the spread going to zero. 

The Mean Value of x2 

A one-dimensional box is assumed to have infinite potential 
energy walls and a width a. The origin will be on the left. The 
potential energy within the box is zero. The solutions are well 
known [1]: the energies are E = k2h2/8ma2 with quantum 
number k = 1, 2, 3, ... and the wave functions are given by 
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The mean value of x2 is defined and calculated (last step 
integration by parts) as follows: 
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This result shows that, whereas <x> (= a/2), as is shown in all 
textbooks, is independent of the quantum state that the particle 
is in, this is not so for <x2> and consequently also not so for 
the spread in position. Kauzmann [2] gives the correct 
expression, but at least two other textbooks [3, 4] are in error. 
They use the classical limit (= a2/3) instead of the true solution. 
The spread becomes 
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The quantum number dependence of the uncertainty or spread 
is such that the spread in position is growing towards the 
classical limit with increasing values of k. To obtain the 
Heisenberg relation, the spread in momentum has to be 
calculated. Because the particle moves with equal probability 
to the left and to the right <p> = 0 and ∆p = √<p2>. As the 
particle has only kinetic energy, the energy is equal to p2/2m, 
rendering <p2> = k2h2/4a2 and from this ∆p = kh/2a. This leads 
to 
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Table 1. The double summation is evaluated explicitly as the sum of 36 terms for the example n = 6 

j  ⇓   k  ⇒ 1 2 3 4 5 6 
1 �1 1/4 � 1 1/4 � 1/9 1/16 � 1/9 1/16 � 1/25 1/36 � 1/25 
2 1/4 � 1 �1/9 1/16 � 1 1/4 � 1/25 1/36 � 1/9 1/16 � 1/49 
3 1/4 � 1/9 1/16 � 1 �1/25 1/36 � 1 1/4 � 1/49 1/64 � 1/9 
4 1/16 � 1/9 1/4 � 1/25 1/36 � 1 �1/49 1/64 � 1 1/4 � 1/81 
5 1/16 � 1/25 1/36 � 1/9 1/4 � 1/49 1/64 � 1 �1/81 1/100 � 1 
6 1/36 � 1/25 1/16 � 1/49 1/64 � 1/9 1/4 � 1/81 1/100 � 1 �1/121 

 
Even the minimal value of the expression in the square root 
(k = 1) is larger than one and the Heisenberg relation is 
verified. 

The Origin Dependence 

To demonstrate what is involved, a different origin is chosen 
and the calculation is repeated for a box, situated between x = 
�a/2 and x = +a/2. It is found that <x> = 0, and from the fact 
that the spread should be independent of the choice of origin, it 
is to be expected that <x2> shows origin dependence as well. 
Because the problem now has symmetry, the solutions of the 
Schrödinger equation fall into two classes; the symmetric 
cosine functions for odd quantum numbers and the 
antisymmetric sine functions for even quantum numbers. The 
calculation of <x2> is performed twice: 
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In eqs 5 (odd quantum numbers: symmetric solutions) and 6 
(even quantum numbers: anti-symmetric solutions) one has j = 
1, 2, 3, .... It is clear, that on combining these results with 
<x> = 0 and using eq 3, the changes lead to the same origin-
independent value of the spread as seen before. 

Complete Localization of the Particle in the Box 

As is well known [5], superposition of De Broglie waves 
leads to localization of a quantum particle. This can be shown 
analytically using the cosine solutions of the one-dimensional 
particle in the box. The normalized superposition wave 
function (n mutually orthogonal cosines) is given by: 

 
1

2 (2 1)cos
n

j

j
na a

xπψ
=

−
= ∑  (7) 

The average value of x2 now becomes 
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The integration is performed separately for two cases. In the 
first case (j = k) the calculation is very similar to eq 2 and the 
result is obtained immediately as 
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This certainly does not show localization of the particle. In the 
second case (j ≠ k) the goniometric formula for the sum of two 
cosines is used backwards, 
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In this expression the cosines can have positive and negative 
values, depending on their arguments. Consequently 
interference appears. The result after integration becomes 
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The first case j = k is included using the Kronecker δjk (= 1 for 
j = k and 0 for j ≠ k) function, 
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The example given in Table 1 may be continued in rows (j) 
and columns (k). Any column or row gives: 
 2[�1 � 1/9 � 1/25 � ...] + 2[1/4 + 1/16 + 1/36 + ...] 

These two infinite series, found by Euler, are famous. 

 2[�π2/8] + 2[+π2/24] = �π2/6 

This occurs n times and thus leads to the final result 

 
2

2 2
2

1 ( )
12 62

nx a
n

π
π

  0= + −
  

=  (13) 

As <x> = 0, it follows that ∆x = 0 and complete localization 
of the particle has been obtained. 
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